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A numerical model is presented for investigating control of the three-dimensional 
boundary-layer transition process. Control of a periodically forced, spatially evolving 
boundary layer in water is studied using surface heating techniques. The Navier-Stokes 
and energy equations are integrated using a fully implicit finite difference/spectral 
method. The Navier-Stokes equations are used in vorticity-velocity form and are 
coupled with the energy equation through the viscosity dependence on temperature. 
Passive control of small amplitude two-dimensional waves and three-dimensional 
oblique waves is numerically simulated with either uniform or non-uniform wall 
heating applied. Both amplitude levels and amplification rates are strongly reduced 
with heating applied. Comparison is made with parallel and non-parallel linear 
stability theory and experiments. Control of the early stages of the nonlinear 
breakdown process is also investigated using uniform wall heating. Both control of the 
fundamental and subharmonic routes to turbulence are investigated. For both 
breakdown processes, a strong reduction in amplitude levels and growth rates results. 
In particular, the high three-dimensional growth rates that are characteristic of the 
secondary instability process are significantly reduced below the uncontrolled levels. 

1. Introduction 
Delay of the boundary-layer transition process can significantly reduce the skin 

friction or viscous drag. A sizeable decrease in the viscous drag forces has the potential 
to appreciably reduce fuel consumption and allow greater range and speed. According 
to Bushnell(l983) and Bushnell & Hefner (1990), drag caused by the formation of the 
viscous boundary layer accounts for approximately 30-40 YO of the drag of high-speed 
aircraft and missiles, 50 YO of the drag on transport aircraft and surface ships, and 70 'YO 
of the drag of underwater bodies. 

In low-disturbance boundary-layer flows, the first stage of the transition to turbulent 
motion begins with the development of small-amplitude Tollmien-Schlichting waves. 
As the amplitudes of the instability waves exceed certain threshold values, nonlinear 
effects become appreciable and three-dimensional structures appear. The occurrence of 
three-dimensional phenomena has been observed experimentally in derail by Klebanoff, 
Tidstrom & Sargent (1962), Hama & Nutant (1963), and Kovasznay, Komoda & 
Vasudeva (1 962). The three-dimensional structure that evolves is characterized by 
spanwise alternating peaks and valleys, or regions of enhanced and reduced wave 

t Present address: McDonnell Douglas Aerospace, PO Box 516, MC 106-4126, St Louis, MO 
63166. USA. 
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amplitude, and an associated system of streamwise vortices. This route to transition is 
called fundamental breakdown because the three-dimensional wave components have 
the same frequency as the fundamental two-dimensional wave component. In contrast, 
a second route to transition in the boundary layer has been observed by Kachanov & 
Levchenko (1984), Saric, Kozlov & Levchenko (1984), and Saric & Thomas (1983). 
This route is characterized by subharmonic three-dimensional disturbances which 
leads to a peak and valley system that is staggered. The streamwise wavelength of the 
three-dimensional structures is twice the wavelength of the fundamental wave. The 
experiments indicate that subharmonic breakdown occurs for low and intermediate 
amplitudes of the two-dimensional wave, while the fundamental breakdown occurs for 
higher amplitudes. 

For small freestream disturbance levels, the Tollmien-Schlichting regime covers by 
far the largest downstream distance of the entire transition region. For technical 
applications of transition control, this region is particularly amenable to manipulations 
of the transition process. The flow is easier to control in the early nonlinear stages of 
transition than the later strongly nonlinear stages. Full transition appears to be 
inevitable once the strongly nonlinear stage has been reached. Thus efforts to prevent 
or delay transition applied at the early stages should prove more successful. 

There are basically two approaches to control the transition process. The first 
approach is based on the idea of modifying the base flow and thus its stability 
characteristics. The critical Reynolds number at which the flow becomes unstable is 
either increased or reduced. This approach is often characterized as passive control. 
Several techniques have proved to be effective for passive control including pressure 
gradients, wall suction/blowing, and heating/cooling. The second approach to 
influence the transition process is active (or reactive) control in which the disturbance 
flow resulting from the instability of the base flow is directly influenced using wave 
superposition techniques. An investigation of active control simulating surface heater 
strips as in the experiments of Liepmann, Brown & Nosenchuck (1982) has been made 
by Kral & Fasel (1991) using the complete Navier-Stokes equations. In the present 
paper, passive control using surface heating techniques is investigated. In particular, 
we are investigating in detail the effect of wall heating for both primary 
(Tollmien-Schlichting) instability and secondary (three-dimensional) disturbances. 
Experiments have been conducted only for control of small-amplitude, two- 
dimensional instability waves, whereas in the present numerical investigations control 
of large-amplitude two-dimensional and three-dimensional waves using surface heating 
is studied. 

The effects of passive wall heating were investigated as early as 1946 by Liepmann 
& Fila (1946) who have shown experimentally that wall heating in air hastens 
transition. Hauptmann (1968) used a perturbation procedure to predict that wall 
heating leads to appreciable stabilization in water and slight destabilization in air for 
small variations in viscosity. The first numerical results of heated and cooled water 
boundary layers were obtained by Wazzan, Okamura & Smith (1968, 1970a, b). They 
formulated a linear stability theory model which included the effects of viscosity 
variation with temperature in the base flow and obtained neutral stability curves for 
several levels of heating and cooling. Lowell (1974) reformulated the linear stability 
problem for a wall-heated boundary layer by including all fluid property variations in 
the boundary layer along with the disturbance energy equation, thus allowing fluid 
property fluctuations as well as temperature fluctuations. Lowell found his results to 
be somewhat insensitive to the thermal disturbances and the viscosity variation with 
temperature for the mean flow has by far the most significant impact on the stability 
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of the flow. Stabilization of water boundary layers has been demonstrated 
experimentally by Strazisar, Reshotko & Prahl (1977), Barker & Jennings (1977), 
Barker (1979), and Nosenchuck (1982). Barker & Jennings and Barker studied the 
boundary-layer flow on the inside of a cylindrical tube and found a considerable 
increase in transition Reynolds number with heating. Nosenchuck found the same 
overall trends as Barker & Jennings and Barker, although Nosenchuck’s experimental 
results showed less stabilization. This discrepancy was attributed to a slight favourable 
pressure gradient in the tube flow of Barker. The results of Strazisar, Reshotko & 
Prahl show that as wall heating is increased the minimum critical Reynolds number at 
which the flow becomes unstable increases, the disturbance growth rates decrease, and 
the region of unstable frequencies decreases. These trends are consistent with the 
numerical analysis of Wazzan, Okamura & Smith and Lowell. Differences between the 
experimental data and numerical results were attributed to non-parallel effects. El- 
Hady & Nayfeh (1979) have performed a non-parallel stability analysis using the 
method of multiple scales. Bestek, Dittrich & Fasel (1987) have numerically studied 
passive control by surface heating for a two-dimensional, incompressible, spatially 
evolving boundary layer using the complete Navier-Stokes equations. Although, direct 
comparison with experiments was not made, the numerical trends were consistent with 
experimental results. 

In addition to uniformly heating the flat plate, Strazisar & Reshotko (1978), Barker 
& Jennings (1 977), and Nosenchuck (1 982) have experimentally examined non- 
uniform surface temperature distributions. More efficient heat utilization can be 
achieved using non-uniform wall heating since the flow upstream of the critical 
Reynolds number is stable and does not need heating. Gazley & Wazzan (1985) have 
also studied a non-uniform surface temperature distribution using the linear stability 
theory model of Wazzan, Okamura & Smith. Nayfeh & El-Hady (1980) and Asrar & 
Nayfeh (1 985) performed stability analyses showing that the stability is strongly 
dependent on the non-uniform heat distribution. 

Zang & Hussaini (1985 a, b)  have examined three-dimensional passive control of the 
secondary instability process using heating, suction, and pressure gradient by direct 
numerical simulation of the boundary layer using the temporal model. They 
investigated control of the fundamental breakdown process and found that passive 
control did not prevent secondary instability. However, the secondary instability 
process is substantially weaker than for the uncontrolled boundary layer. In contrast, 
in this paper, transition control is investigated numerically based on a spatial model. 
This model allows for investigations of spatially growing, three-dimensional 
disturbance waves in a growing two-dimensional boundary layer. With this model, the 
three-dimensional hydrodynamic stability of an initially laminar, incompressible 
boundary layer on a flat plate with constant surface heating applied can be 
investigated. The unsteady, three-dimensional Navier-Stokes and energy equations are 
the basic equations used in this model. 

A numerical model based on the complete Navier-Stokes equations that allowed for 
two-dimensional numerical simulations of spatially growing and propagating small- 
amplitude Tollmien-Schlichting waves in a boundary layer was first introduced by 
Fasel(l976). Based on the same numerical model, Fasel, Bestek & Schefenacker (1977) 
have performed calculations with larger-amplitude oscillations to investigate nonlinear 
effects in the two-dimensional stages of boundary-layer transition. A modified version 
of this numerical method was used by Fasel & Bestek (1980) to study the nonlinear 
two-dimensional transition behaviour in plane Poiseuille flow. Later, Fasel, Rist & 
Konzelmann (1990) developed a numerical method, also based on the complete 
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Navier-Stokes equations, to investigate spatial three-dimensional disturbances 
evolving in a two-dimensional boundary layer. This numerical model was adapted for 
the investigation of three-dimensional boundary-layer transition control which is the 
subject of this paper. The numerical model had to be extended to include the energy 
equation and to allow for temperature-dependent viscosity. 

In order to gain an understanding of the control aspects of transition, linear small- 
amplitude disturbances were first considered in the present study. Therefore, control of 
small-amplitude two-dimensional waves and three-dimensional oblique waves was 
studied first. Uniform and non-uniform surface temperature distributions were 
considered. The results are compared with available experimental measurements and 
theory. Control of the nonlinear secondary instability process was also investigated 
with uniform heating applied. Results of control of both the fundamental peak-valley 
and the subharmonic staggered peak-valley breakdown processes are discussed. 

2. Governing equations 
The flow of a non-isothermal viscous fluid is governed by the Navier-Stokes and 

energy equations. Water is chosen as the representative fluid throughout this work so 
that comparison with the results of previous experimental and theoretical investigations 
can be made. An assessment of the influence of the various force, energy, and variable 
property effects on the flow considered in this paper was made by Kral (1988). Here, 
buoyancy forces and viscous dissipation (frictional heat) are neglected for the moderate 
velocities considered. For water, the fluid properties are not affected by moderate 
pressures. The specific heat and density are relatively independent of temperature and 
the thermal conductivity also varies little with temperature in water. However, the 
viscosity of water decreases very markedly with increasing temperature and therefore 
the variation of viscosity with temperature is included. 

2.1. Equations of motion in vorticity-velocity representation 

The numerical method is based on the Navier-Stokes equations in a vorticity-velocity 
formulation. This formulation was first used successfully for transition simulations by 
Fasel (1976). The equations are made dimensionless by choosing characteristic scales 
that correspond with the physical scales of the problem considered. The variables are 
non-dimensionalized as follows : 

w, = + 
U ,  Re;’ 

w, = -s-- 
U,  Re;’ 

where the subscript ‘ w ’ represents the wall value, the subscript ‘ co ’ represents the free- 
stream value and L is a characteristic length. The parameter Re = pu,L/,iiw is the 
Reynolds number. The y-coordinate and normal velocity component v are stretched by 
the factor Re; to ensure that all coordinates and velocity components are of the same 
order of magnitude in the numerical computations. 
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For the incompressible, three-dimensional flow of a Newtonian fluid, the non- 
dimensional conservation laws are (in vector notation). 

Continuity: v,. u= 0, (2.1) 

(o .V1)  u= pv;o+c.  (2.2) 
D o  
Dt 
-- Vorticity transport : 

Energy : v,z T’ 
D T  1 
Dt RePr 

- 

The velocity U and vorticity o are vector fields: U = [u, v, w] and o = [wx, wy, wz] 
where o is defined by o = -V x U. The non-dimensional vorticity components are 
then defined by 

(2.8a) 

(2.8b) 

(2.8 c) 
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The non-dimensional form of the vector operators are 

a a a  
- a x  ay aZ '17 - -i+-j+-k, 

a , a  a 
ax ay az 

V, = -i+Rez-j+-k, 

( 2 . 9 ~ )  

(2.9 b) 

(2.9 c) 

(2.9 d) 

A detailed derivation of these equations is given in Kral (1988). 
For the numerical method, (2.2H2.7) are used. The continuity equation (2.1) is not 

directly solved in the field. However, the divergence of the velocity field is used to 
monitor the quality of the numerical solution and provides a check on the grid 
resolution required. This check on the divergence was shown by Kral (1988) and 
revealed that the divergence-free condition was well satisfied. Thus, the governing 
equations are a system of seven equations for the eight components u, u, w, wz, wy,  wz, 
T, and p .  To relate viscosity and temperature, ,u = p(T) ,  the empirical relationships of 
Hardy & Cottington (1949) and Swindells (1982) are employed. The empirical 
relationship is for 0 "C < T < 20 "C: 

- 1.30233, (2.10~) 
1301 

10glopu, = 998.333 + 8.1855( T-20) +0.00585(T- 20)' 

for 20 "C 6 T <  100 "C: 

5 (2. lob) 
,iip 1.3272(20- T)-O.001053(T-20)' 

P20 T+ 105 log lo^ = 

where temperature is in degrees Celsius, viscosity is in centipoise, and pz0 = 1.002 CP. 

3. Boundary and initial conditions 
To complete the mathematical formulation of the problem, an integration domain 

has to be identified and the boundary conditions on the boundaries have to be 
specified. Matters are more complicated here because the spatial development of the 
flow is of interest. In ' flow-through' systems, physically realistic inflow and outflow 
boundary conditions are difficult to prescribe and implement in the numerical method. 
For a discussion conceiving difficulties resulting from the simulations based on the 
realistic (spatial) inflow-outflow model see Fasel(l989). The numerical simulations are 
organized such that, first the steady, laminar, two-dimensional solution of the 
governing equations is obtained for the heated, undisturbed flow whose stability is to 
be investigated. A time-dependent method is used to solve for the undisturbed, mean 
flow by integrating the unsteady Navier-Stokes equations until a steady-state solution 
is obtained. Then, periodic perturbations are introduced and the time-dependent, 
three-dimensional solutions to the governing equations are calculated. The spatial 
domain for the investigations considered in this work is rectangular as shown 
schematically in figure 1. 
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FIGURE 1. Computational domain and coordinate system. 

3.1. Boundary and initial conditions for the undisturbedjlow 
For a boundary-layer flow along a flat plate, the typical velocity profile used in stability 
analyses is the similarity solution of the boundary-layer equations. For the case of 
isothermal flow, the well-known Blasius boundary-layer profile can be used. For a 
uniform wall temperature distribution or for a power law temperature distribution 
(T,(x) - T, = A x p )  in a fluid with constant properties, the flow profiles are still self- 
similar. However, for a fluid with variable properties, the flow is no longer self-similar 
if the wall temperature is non-uniform.? The similarity solutions of the momentum and 
energy equations with variable viscosity and a uniform wall temperature distribution 
are used to specify the inflow boundary conditions for the two-dimensional undisturbed 
flow. The velocity, vorticity, and temperature components for this similarity solution 
are denoted by the subscript ‘SIM’, thus, uSIM(x, y ) ,  vSIM(x,y),  wZSIM(x,  y ) ,  and 
T S I M ( X ,  Y) .  

The complete set of boundary and initial conditions for the undisturbed flow are 
given below. Since the undisturbed flow is two-dimensional, the z-velocity component 
w and the w, and wy vorticity components vanish. Also, boundary conditions on the 
lateral faces of the domain (B-PG-C) and (A-E-H-D) are not needed. 

Initial conditions for the undisturbed jlow 
The steady-state solution to the governing equations can be obtained for any initial 

velocity, vorticity, and temperature distribution. However, computational time is 
significantly reduced if the initial conditions are close to the steady-state solution. 
Therefore, the similarity solution is used to initialize the field for the undisturbed flow : 

(3.1) d<x, Y ,  G O )  = $ S I M ( X ,  Y ) ,  

where 6 = [t;, 0, O , O ,  0, G,, F]  and the superscript ‘”’ represents the undisturbed flow. 

t Nayfeh & El-Hady (1980) state that non-similar boundary-layer profiles are necessary in a 
stability analysis of non-uniform wall temperature distributions to agree even qualitatively with 
experimental data. In this work, the undisturbed flow is a solution of the full Navier-Stokes and 
energy equations and is thus a non-similar solution. 
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Injlow boundary conditions for the undisturbedjlow 

plane (A-B-C-D) as already discussed: 
The similarity solution for the flat plate boundary layer is imposed at the inflow 

Outjlow boundary conditions for the undisturbedjow 
At the outflow plane (E-F-G-H), boundary conditions are imposed so as to minimize 

the upstream influence on the flow. Conditions that were satisfactory with this regard 
are : 

( 3 . 3 ~ )  

(3.3b) 

(3.3 c) 

(3.3d) 

These conditions result from boundary-layer considerations and from the continuity 
equation. For large Reynolds numbers, the a2/ax2 terms in the governing equations are 
negligible. If the terms were neglected everywhere, the equations would become 
parabolic with respect to x. For the present investigation with the full Navier-Stokes 
equations, the terms are neglected only at the outflow boundary for the u Poisson, 
vorticity, and energy equations. Boundary condition ( 3 . 3 ~ )  is used to enforce mass 
conservation at the outflow boundary. 

Outer boundary conditions for  the undisturbed j a w  
The boundary conditions at the outer boundary (D-C-G-H) are : 

(3.4b) 

(3.4c) 

(3.4d) 

Equation ( 3 . 4 ~ )  denotes that there is no free-stream pressure gradient imposed on the 
flow. Equation (3.4b) is derived from the continuity equation and taking ( 3 . 4 ~ )  into 
account. Condition ( 3 . 4 ~ )  is based on the physical consideration that the vorticity is 
confined to the region of high shear close to the wall. Condition ( 3 . 4 4  is also based 
on physical considerations. The thermal boundary layer for water (Pr = 6.3) is much 
smaller than the fluid boundary layer and therefore the temperature gradients are 
confined to the wall region as well. 
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Wall boundary conditions for  the undisturbedjlow 
At the wall (A-B-lo-E), the conditions for the undisturbed flow are: 

a(x, 0, z ,  t )  = 0,  

qx, 0, z ,  t )  = 0, 

(3.5a) 

(3.56) 

ae -(x, 0,  -7, t )  = 0 ,  
aY 

ahz a 2 0  
-(x,O,z,t) =-- ax a y 2  

(3 .54  

(3.5 d )  

f(x, 0, z ,  t )  = A,  xp. (3.5e) 

Boundary condition (3.5a) is the no-slip condition and (3.5b) models an impermeable 
wall. Boundary condition ( 3 . 5 ~ )  results from the continuity equation and is used as an 
integral condition for boundary condition (3.5 d) .  The boundary condition for the wall 
vorticity, (3.5d), is derived by applying the v Poisson equation at the wail. Previous 
stability investigations by Fasel(l976) have shown that use of this boundary condition 
for the vorticity yields numerical results which are in excellent agreement with linear 
stability theory and experimental investigations. 

Finally, for the wall temperature, boundary condition (3.5e) is imposed. This 
condition depends on the mode of control under investigation. The coefficient A,  
denotes the level of heating and the wall temperature can be varied with the function 
xp. For A,  = 0, the wall is unheated. For A ,  + 0 andp = 0, a uniform wall temperature 
distribution is imposed. For A ,  + 0 and p + 0, a non-uniform wall temperature 
distribution is used. 

3.2 Boundary and initial conditions for the disturbedjlow 
The calculation of the disturbed flow is fundamentally different from that of the 
undisturbed flow and requires different boundary conditions to the steady flow. The 
conditions described below allow for generating three-dimensional periodic dis- 
turbances. 

Initial conditions for  the disturbedjlow 

t = t ,  for the time integration of the disturbed flow, thus 
The two-dimensional steady state solution provides the initial condition at time 

where 4 = [u, v, w, oz, wy, wz, TI. The disturbances are then generated at t > t ,  using 
periodic wall heating or periodic suction and blowing. This boundary condition is 
imposed at the wall and is discussed together with the wall boundary conditions for the 
disturbed flow. 

Lateral boundary conditions for  the disturbedjlow 

lateral boundaries (A-D-If-E) and (B-C-G-F) are : 
The flow is assumed to be spanwise periodic. Thus, the periodicity conditions on the 

8 F L M  264 
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Injlow boundary conditions for  the disturbedjlow 

At the inflow plane (A-B-C-D), all disturbances are assumed to be zero. 

4 ( X O , Y , Z ,  t> = 0. (3.8) 

Outjlow boundary conditions for  the disturbedjlow 
The specification and implementation of proper outflow boundary conditions 

represent the major difficulty when developing a numerical method based on the spatial 
model. Ideally, radiation conditions are desired which render the outflow boundary 
transparent to all disturbance wave components. Often, wave reflection is a large 
problem in numerical simulations when finite computational domains are used. 
Recently Kloker, Konzelmann & Fasel (1993) have developed an effective method to 
prevent reflections by suppressing the disturbances in a ' relaminarization zone '. 

To avoid problems resulting from wave reflections, an integration domain is used 
where the outflow boundary is propagated ahead of the disturbance wavefront in this 
work. The moving boundary is propagated sufficiently ahead of the disturbance waves 
such that no disturbances reach the outflow boundary. The choice of a moving 
boundary, instead of a large integration domain for the entire time integration, makes 
the simulations computationally more efficient. The boundary is propagated 
downstream using the following relationship : 

xo < xB = xB, + VB(t - t l)  < xN for t 3 t,, (3.9) 

where xB is the position of the right-hand boundary, xB, is the position at time t,, and 
V, is the propagation speed of the right-hand boundary. If the outflow boundary 
position reaches its maximum, xB = xN, the boundary remains fixed thereafter. (Note : 
For the computation of the undisturbed flow, the outflow boundary is fixed at 
xB = xN.) However, results from the computation are only used for further analysis 
when the disturbance wavefront has not yet reached the outflow boundary in order to 
avoid contamination of the data owing to possible reflections. In typical calculations, 
the outflow boundary is six to seven wavelengths ahead of the wavefront and is 
propagated at a speed slightly greater than that of the disturbance waves. 

Outer boundary conditions for  the disturbedjlow 

component is assumed : 
At the free-stream boundary (C-D-H-G), exponential decay for the ZI velocity 

( 3 . 1 0 ~ )  

where a* is a wavenumber. The choice of a* is discussed later in context with the 
numerical method. The boundary conditions for the vorticity and temperature are 

(3.10 b) 

( 3 . 1 0 ~ )  

Boundary conditions (3. lob)  and ( 3 . 1 0 ~ )  follow from the same considerations as for 
the undisturbed flow. Vorticity and temperature gradients are concentrated in the 
region near the wall and the free-stream boundary is far enough from the wall so that 
these quantities can be assumed to be zero. Note that only a boundary condition for 
the ZI velocity component is prescribed for the velocity field, as the u Poisson and w 
Poisson equations contain no y-derivatives for the u-velocity and w-velocity. 
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Wall boundary conditions for the disturbedpow 

The disturbances are introduced into the integration domain at the wall (A-B-F-E) 
by superimposing on the steady flow a periodic perturbation. These perturbations are 
introduced into the domain using one of two different techniques. In the first technique, 
localized time-dependent normal velocity fluctuations are introduced within a narrow 
strip. In the second technique, localized time-dependent heating on a finite-width 
heating strip creates the perturbations. The following boundary conditions at the wall 
are then imposed: 

(3.11a) 

(3.11 b)  

(3.1 1 c)  

u(x, 0,  z ,  t )  = 0, 

4x7 0, z ,  t> = v&, 2 7  0, 
w(x, 0, z ,  t )  = 0,  

azw, a Z w x  a Z w  i a  
~ ( X , O , Z , t ) + ~ ( X , O , Z , t )  = - ~ ( x , O , z , t ) + - - ( V ~ v ( x , O , z , t ) ) ,  ax az2  ax ay Re i3.z 

(3.11d) 

(3.11 e )  

(3.11f) 
a% a% 1 

~ (x ,  0, 2, t )  = - (x ,  0 ,  2, t )  -- v; v(x, 0,  2, t ) ,  
ax a Z  Re 

T(x ,  o ,z ,  t )  = Tw(x, 2, t). (3.11g) 

Equations (3.11 a) and (3.11 c) are the no-slip conditions. The u velocity component at 
the wall is described by equation (3.11 b). This condition allows for the introduction of 
localized streamwise, spanwise, and time-dependent velocity disturbances into the flow 
field and simulates a suction and blowing strip. Equations (3.11d), (3.11e) and 
(3.1 I f >  provide the boundary conditions for the three vorticity components at the wall. 
Equation (3.1 1 d )  results from the definition of vorticity (equation (2.8)), the continuity 
equation (equation (2.1)), and conservation of vorticity ( V - o  = 0). Equation (3.1 1 e) 
results from the definition of wy at the wall and (3.1 1 f )  results from the v Poisson 
equation at the wall. The boundary condition for the temperature (3.1 1 g )  is similar to 
the boundary condition for the v velocity component. This condition allows for 
localized streamwise, spanwise, and time-dependent temperature perturbations to be 
introduced into the flow field. 

Several comments are in order regarding boundary condition (3.11 b)  and (3.11 g). A 
perturbation input into the flow field is necessary to create a forced disturbance flow. 
Whether the initial disturbance input into the flow is created through a suction and 
blowing slot or by a surface heater strip is not relevant. The functions v,(x, z ,  t )  and 
Tw(x, z ,  t )  for the suction and blowing input and for the temperature input have the 
following forms : (a)  Disturbance input with periodic suction and blowing: 

z ,  t )  if xB d x d xE,  
v&, z,  t )  = otherwise, 

7 3 ,  z ,  t )  = 0, 

uw(x, z ,  t> = 0, 

or (b)  Disturbance input with periodic heating: 

(3.12a) 

(3.12b) 

(3.13 a)  

(3.13 b) 

8-2 
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where xB denotes the beginning of the strip and x E  denotes the end of the strip. The 
generation of Tollmien-Schlichting waves was previously investigated numerically 
using a blowing and suction slot by Konzelmann, Rist & Fasel(l987) and a heater strip 
by Kral & Fasel (1991). 

4. Numerical method 
The numerical method of Fasel et al. (1990) was modified to include the energy 

equation and to allow for the viscosity variation with temperature. Standard central 
finite-difference approximations of second-order accuracy are used in the streamwise 
and normal directions and a spectral representation is used in the spanwise direction. 

In spectral methods, the solution to a problem is represented as a truncated series of 
known functions for the flow variables. A continuous real function $(z) which is 
periodic in the spanwise z-direction with a period of 2z; i.e., $(z) = $(z + (2z/y)), can 
be approximated by 

k=IK 

$(z) 1: C Gkeikyz, (4.1) 
k=-'K 

where the Fourier coefficients Q k  are complex conjugates 

Q-k = @k*, 
and y is the spanwise wavenumber. The velocity, vorticity, temperature, and viscosity 
are assumed continuous and periodic and so are expanded in a series of the form of 
(4.1) where q5 = (u, v, w, wg, wY, wz, T,  p) and @ = (U,  V,  W, Qz, Q,, Q,, 0, A). 

The governing equations and boundary and initial conditions in physical space that 
are presented in 9 3 are converted to Fourier space using (4.1). This is demonstrated for 
two boundary conditions; further details are given in Kral (1988). Fasel et al. (1990) 
have shown that the proper choice of a* in the outer boundary condition of (3.10~) is 
a; = ( a ~ , + y z k 2 ) ~ .  This condition is derived by applying the V ,  Poisson equation 
together with the ansatz for a travelling wave from linear stability theory. 

The disturbance is introduced at the wall through a suction/blowing strip or a 
surface heater strip. In Fourier space, the disturbance input is defined as follows: (a) 
Disturbance input with periodic suction and blowing : 

for k < 1 

and for k > 1: 

for all k :  
C,(x, 2, t )  = 0, 

Gk(X, z, 0 = 0, 

or (b) Disturbance input with periodic heating: 

for all k :  

for k < 1 : 
Vw,(x, z, 0 = 0, 

(4.2a) 

(4.2b) 

(4.2 c) 

(4.3a) 

(4.3b) 
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OWk(X, z ,  t )  = 0. (4.3 c) 

The functions fv(x, z ,  t )  and fT(x ,  z ,  t )  are chosen to be of the following form: 

(4.4a) 

(4.4 b)  

The parameters eve, cvl, eTo, and cT1 determine the two-dimensional and three- 
dimensional input amplitudes. 

With the use of the spectral ansatz in the spanwise direction, the three-dimensional 
governing equation system reduces to 3K vorticity transport equations, 3K Poisson 
equations for the velocities, K energy equations, and K viscosity equations, where K is 
the number of Fourier modes retained in the spectral approximation. The resulting 
two-dimensional system of equations is solved in Fourier space. The vorticity transport 
and energy equations are advanced in time using backward differences of second-order 
accuracy. Owing to the elliptic nature with respect to x and y of the governing 
equations, a large system of equations has to be solved. These equations systems are 
solved using a Gauss-Seidel line relaxation procedure. The nonlinear terms are 
updated throughout the iterative procedure with the iterations continuing until 
convergence is achieved. For details of the numerical method, see Kral (1988). 

5. Results 
The numerical method was first tested extensively with calculations of two- and 

three-dimensional waves of very small amplitudes. Detailed comparison with linear 
stability theory and experiments was made to provide a thorough check of the 
numerical method. The method was then applied to simulate control of the nonlinear 
secondary instability process for both the fundamental and subharmonic breakdown 
processes. 

5.1. Passive control of linear disturbances using uniform wall heating 
The parameters chosen for the simulation of control of linear disturbances closely 
model the experiments of Strazisar, Reshotko & Prahl (1977) and Strazisar & 
Reshotko (1978). Although only control of two-dimensional waves was considered in 
these experiments, here the control of small-amplitude three-dimensional oblique 
waves is investigated in addition to the two-dimensional waves. 

The fluid in the physical experiments was water which was therefore used for all the 
control investigations reported here. The free-stream temperature Tw in the 
experimental investigations was 75 "F (or 23.89 "C). For water at this temperature, the 
dynamic viscosity ji, is 9.135 x kg m s-l and the Prandtl number Pr is 6.3. A 
Reynolds number Re of 1 x lo5 was used with a free-stream velocity D, of 3 m s-l and 
a reference length L of 0.0353 m. Results of control of a disturbed flow forced with 
frequency F = 1 (F  is the non-dimensional frequency parameter, defined as 
F = ,&, 104/Oi where p is the dimensional circular frequency) will be discussed in 
detail and comparison with experiments will be made at both F = 1 and F = 1.55. For 
the case with F = 1, (J = lo), the following parameters were used: Resl (at x,) = 500, 
y = 20, and K = 2. For the case with F = 1.55, ('J = 15.5), the parameters were: Resl 
(at x,) = 475, y = 20, and K = 2. The same spanwise wavenumber y was chosen for 
both frequencies. Thus, for F = 1, the oblique waves are at an angle of about 35" with 
respect to the x-axis and for F = 1.55, the oblique angle is approximately 26" with 
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FIGURE 2.  Stability diagram for a uniformly heated wall from (a) experiments of Strazisar et al. (1977) 
and (b) linear stability theory of Lowell (1974). Solution domain for Navier-Stokes calculations of 
small-amplitude disturbances is shown by the horizontal bars with the location of the disturbance 
input shown by 0.  
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respect to the x-axis. In the calculations, approximately 30 grid points per disturbance 
wavelength were used and the solution domain contained approximately 16 disturbance 
wavelengths. One time period was discretized with 60 time intervals. The y-direction 
spanned approximately ten boundary-layer displacement thicknesses at the inflow 
boundary and about five boundary-layer displacement thicknesses at the outflow 
boundary. The x extent of the computational domain in relation to the linear stability 
theory diagram is shown in figure 2 for both frequencies. The stability diagram in figure 
2(a) is from the experimental investigation by Strazisar et al. (1977) and the stability 
diagram of figure 2(b) is from the linear stability theory calculations by Lowell (1974). 
The stabilizing effect of uniform heating can be observed for both stability diagrams 
where neutral curves are shown for different levels of wall heating. Significant 
differences exist between measurements and theory at the higher frequencies. Strazisar 
et al. (1977) attributed non-parallel effects to the crossing of the neutral curves (in 
figure 2a). However, this phenomena cannot be observed in parallel linear stability 
analysis. 

For the control simulations of linear disturbances, the perturbations are introduced 
through periodic heating at the wall simulating a flush mounted heater strip as used in 
the experiments by Liepmann et al. (1982). The wall boundary conditions for the 
undisturbed flow follow from (4.3) : 

Ozn, = A ,  x: + sin2 ( [ J .  (5.1a) 

The wall boundary conditions for the disturbed flow for k < 1 are: 
(5.1 b) 

A 

@zn, y=o, zk = sin2 (5,) [€OK sin (PI, t)I, 

where 

and xHB d X n  d XHE. 
The heater strip is located one disturbance wavelength downstream of the left 
boundary ( x H B  = 30 and xHE = 45) and its width is about half of a Tollmien- 
Schlichting wavelength. The location of the heater strip relative to the neutral 
curves is also shown in figure 2. The width of the heater strip and streamwise shape 
function are chosen based on a receptivity study of a surface heater strip. Details of the 
study can be found in Kral & Fasel(l991). The disturbance amplitudes eQ and are 
chosen so that the temperature perturbations create linear disturbance veiocities with 
a maximum of approximately 0.05 O h  of the free-stream velocity. The x-distribution is 
chosen so that the temperature input from the heater strip represents heating only and 
no cooling. For the present calculations, the temperature inputs to the heater strip were 
1.1 O F  (2 "C) for the oscillatory component and 1.67 O F  (3  "C) for the mean component. 

Before presenting results of the control simulations, the calculation of linear 
disturbance waves without control is discussed. The uncontrolled flow simulations 
form a basis for comparison with the controlled simulations. In addition, comparison 
with linear stability theory provides validation of the code. Mean flow quantities were 
compared and the growth of the boundary-layer displacement thickness and skin 
friction are nearly identical for the Navier-Stokes and the Blasius similarity solutions. 

The disturbance flow resulting from the time periodic disturbance input at the heater 
strip is shown in figure 3 for the streamwise velocity component. Shown are perspective 
representations of each Fourier mode which were obtained after nine periods had been 
computed. The two-dimensional mode (k = 0) is shown in figure 3(a). The three- 
dimensional mode (k = 1) is shown in figure 3(b) for the three-dimensional oblique 
wave. The disturbance waves decay at first and then begin to amplify downstream. This 
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FIGURE 3. Uncontrolled instantaneous, disturbed flow after nine periods of oscillation at F = 1 for 
the (a) two-dimensional streamwise velocity component, U, and (b) three-dimensional streamwise 
velocity component, U,. 

behaviour is in qualitative agreement with the stability diagram of figure 2 in which, 
for the two-dimensional disturbances, the calculation begins in the stable region and 
then crosses the neutral curve into the region of instability. Although the stability 
diagram is for two-dimensional disturbances, the three-dimensional growth is similar 
to the two-dimensional growth for this chosen oblique angle. 

The computations for small-amplitude perturbations should be comparable to the 
Orr-Sommerfeld solution. To allow comparison, we have solved the Orr-Sommerfeld 
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YIAY 
FIGURE 4. Comparison of amplitudes between -, the Navier-Stokes solution and . . . . ., linear 
stability theory without control applied for F = 1 at Reg = 800 for the (a) two-dimensional 
streamwise velocity, U, and (b) three-dimensional streamwise velocity, U,. 

equation for both two-dimensional waves and three-dimensional oblique waves. The 
linear stability theory solution is compared with the Navier-Stokes solution at a 
displacement thickness Reynolds number Resl = 800 (n = 175). Amplitude profiles are 
obtained from the Navier-Stokes calculations by a Fourier time series analysis over 
one period of oscillation. The Navier-Stokes solution is normalized with the linear 
stability theory calculation by the maximum of the U, disturbance velocity. Figure 4 
displays the exceptional agreement in amplitudes of the streamwise velocity for both 
mode 0 and mode 1. Similar agreement with linear stability theory for a calculation 
with frequency F = 1.55 is shown in Kral (1988). 

For each frequency, control using a uniform surface temperature distribution was 
investigated for four cases, three of which had uniform heating and one had uniform 
cooling applied at the wall. For this, the parameter p in (5.1) was set to 0 since the 
surface temperature distribution is uniform at the wall. The levels of heating (set in 
(5.1)) for the four cases were: A T  = 3 O F ,  AT = 5 O F ,  AT = 8 OF, and A T  = - 5 O F .  

Results of a disturbed flow for a uniformly heated wall with A T  = 8 O F  and F = 1 are 
shown in figure 5. Perspective representations of each Fourier mode for the streamwise 
velocity are shown after nine time periods. For both the two- and three-dimensional 
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FIGURE 5. Instantaneous, disturbed flow after nine periods of oscillation at F = 1 with AT = 8 O F  

uniform wall heating applied for the (a) two-dimensional streamwise velocity, U,, and (b) three- 
dimensional streamwise velocity, U,. 

components, the influence of the uniform control on the disturbed flow is obvious. The 
flow components show a strong damping downstream of the disturbance input. The 
behaviour of the two-dimensional waves is in qualitative agreement with the linear 
stability diagram of figure 2(b) for A T  = 8 O F  in which decay is expected for the 
computational domain used. 

To illustrate the effects of heating for all four cases, amplitude profiles are shown in 
figure 6 for the streamwise velocity and the streamwise vorticity. The comparison is 
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FIGURE 6. Amplitude profiles for varying levels of wall heating at Req,= 800 and F = 1 for the (a) 
two-dimensional streamwise velocity, U,, (b) three-dimensional streamwise velocity, U,, and (c)  three- 
dimensional streamwise vorticity, QZ1. (i) AT = 0 O F ,  (ii) 3 O F ,  (iii) 5 O F ,  (iv) 8 O F ,  (v) - 5 O F .  
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FIGURE 7. Influence of uniform wall heating on the amplitude growth at I; = 1 for the (a) inner 
maximum of the two-dimensional streamwise velocity, U,, and (b) inner maximum of the three- 
dimensional streamwise velocity, U,. (i) A T  = 0 "F, (ii) 3 "F, (iii) 5 O F ,  (iv) 8 O F ,  (v) - 5  "F. 

made at a displacement thickness Reynolds number of Resl = 800. With each 
incremental increase in heating, the amplitude levels are reduced for the velocity and 
vorticity, while wall cooling results in an increase in amplitudes. The shape of the 
amplitudes does not change significantly. 

In connection with the reduction in amplitude levels, the growth rates are also 
affected. The downstream growth of the amplitude is shown in figure 7 for all cases. 
The amplitudes at the maximum of the U, and U, disturbance velocity components are 
plotted versus the streamwise x-direction. The reduction in amplitudes with increasing 
uniform wall heating can be seen for both the two- and three-dimensional components. 
In contrast, cooling increases the amplitudes. 

In the following, a direct comparison of the growth rates obtained from the 
Navier-Stokes calculations with those from stability theory and experiments is made 
for both F = 1 and F = 1.55 with uniform heating applied. The growth rate ai is 
calculated from the Navier-Stokes solution by ai, = - d(ln (A,/A,,,))/dx where A ,  
represents the two-dimensional amplitude of the flow variable upon which the stability 
criterion is based and A,, is a reference amplitude. Here, only the linear two- 
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FIGURE 8. Comparison of amplification rates from Navier-Stokes calculations with parallel linear 
stability theory for uniform wall heating at Re,l = 800 for (a) F = I and (b) F = 1.55. 0, 
Navier-Stokes (inner max u) ;  0, Navier-Stokes (max 0); @,, parallel theory (Lowell); +, parallel 
theory (El-Hady et al.). 

dimensional amplification rates are compared since the experimental and theoretical 
work was for two-dimensional Tollmien-Schlichting waves only. Figure 8 (a) shows a 
comparison of the Navier-Stokes results with parallel linear stability theory for 
different heating levels at Resl = 800 for F = 1 and figure 8(b) shows a comparison at 
Resl = 800 for F = 1.55. The amplification rates from the numerical simulations were 
calculated at the inner maximum of the U, velocity and at the maximum of the V, 
velocity. Shown for comparison are the linear stability theory results of Lowell (1974) 
and El-Hady & Nayfeh (1979) for a parallel uniformly heated boundary layer. 
Although El-Hady & Nayfeh also performed a non-parallel stability analysis for the 
heated flow, the streamwise distortion of the eigenfunctions of the disturbances was 
neglected for these particular cases. El-Hady (1990, private communication) claims 
that this distortion must be taken into account for an accurate non-parallel analysis 
and so comparison is made only with the parallel theory. 

The linear stability theory results of Lowell and El-Hady & Nayfeh agree well for the 
cases shown. (Lowell also predicts a damping, in agreement with the Navier-Stokes 
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FIGURE 9. Comparison of amplification rates from Navier-Stokes calculations with linear stability 
theory and experiment for AT= 3.48 O F  and ReJl = 863. 0, Navier-Stokes (inner maxu); 0, 
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solutions, for A T  = 8 O F  at F = 1 and for A T  = 5 O F  and A T  = 8 O F  at F = 1.55, but 
the exact growth rates were unavailable.) The growth rates obtained from the 
Navier-Stokes calculations for the V, velocity component are higher than the growth 
rates obtained from linear stability theory. Based on the U, velocity at F = 1.0, the 
Navier-Stokes solution predicts a slightly lower growth rate than linear stability 
theory, but the agreement is quite good between the Navier-Stokes calculations and 
linear stability theory for the U, velocity component at F = 1.55. As the level of heating 
is increased, the difference between the growth rate based on the U, velocity component 
and the V, velocity component is diminishing. In the linear stability theory calculations, 
all fluid properties may vary with temperature. However, Lowell's results showed no 
appreciable differences for even larger levels of heating with the linear stability 
calculations of Wazzan et al. (1968, 1970a, b) in which only the viscosity variation with 
temperature for the base flow was considered. The slight differences between the 
Navier-Stokes solutions with linear stability theory could also be attributed to the 
different property relationships used in the Navier-Stokes calculations and the stability 
investigations. 

The neutral curves, obtained from the measurements by Strazisar et al. (1977) (see 
figure 2a), are based on the inner maximum of the U, velocity component. One would 
conjecture that the amplification rates decrease with increasing heating for AT = 3 O F  

and A T  = 5 O F  at F = 1.55, however, the amplification rates show a slight increase for 
A T  = 8 O F .  This same trend is not predicted by the linear stability theory of Lowell or 
El-Hady & Nayfeh or by our numerical simulations which allow for all non-parallel 
effects. The non-parallel effects alluded to in the experimental investigations that 
caused the neutral curves to overlap are not seen in this work. 

Comparison with the parallel and non-parallel theory by El-Hady & Nayfeh and the 
experiments by Strazisar et al. is shown in figure 9 for AT = 3.48 O F  and Resl = 863. In 
the non-parallel analysis, the growth rates are based on the inner maximum of the U, 
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FIGURE 10. Power law temperature distributions for A T  = A,x: = 8 O F  at Resl = 800 
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FIGURE 11. Influence of non-uniform wall heating on the skin friction ( P  = 1) for (a) A T  = A, xi0.‘ 
and (6) A T =  Aoxko .  __ , A T  = 0 O F ;  . . ., AT(ReJ1 = 800) = 3 O F ’  ---, AT(Resl = 800) = 5 O F ;  
-.- , AT(Resl = 800) = 8 O F .  
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FIGURE 12. Influence of non-uniform heating on the amplitude growth for A,x;O ', F = 1, based on 
(a) the inner maximum of the two-dimensional streamwise velocity, U, and (b) the second inner 
maximum of the three-dimensional streamwise velocity, U,. See figure 11 for key. 

velocity and the distortion of the U,, eigenfunction with streamwise position is included 
in the definition of the growth rates. The amplification rates based on the inner 
maximum of the U,, velocity and the maximum of the V, velocity obtained from the 
direct simulations are also shown. The higher growth rates based on the V, velocity 
component instead of the U, velocity component are consistent with the results 
obtained from non-parallel investigations for the unheated case (Fasel & Konzelmann 
1990). The growth rates obtained from the Navier-Stokes simulation based on the U,, 
velocity agree better with the non-parallel theory at the lower frequencies. The non- 
parallel theory predicts slightly larger growth rates at the higher frequencies when 
compared with the growth rates from the direct simulations. The experimental data 
(also based on the inner maximum of the U,, velocity) predict larger growth rates than 
parallel and non-parallel theory and the direct simulations for this level of heating. The 
discrepancy between the experiments and the full simulations cannot be due to non- 
parallel effects since these effects are included in our numerical model. 
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FIGURE 13. Influence of non-uniform heating on the amplitude growth for A , x ~ O ,  F = 1, based on 
(a) the inner maximum of the two-dimensional streamwise velocity, U,  and (b) the second inner 
maximum of the three-dimensional streamwise velocity, U,. See figure 11 for key. 

5.2. Passive control of linear disturbances using non-uniform wall heating 
As shown previously, uniform wall heating enhances stability. However, a non- 
uniform wall temperature distribution may lead to even stronger stabilization of the 
flow and may require less heat input than for uniform heating. To confirm this, two 
different non-uniform temperature distributions of the power law form A ,  xz were used 
for both frequencies F = 1 and F = 1.55. The two exponents used were p = -0.5 
and p = 1 .O. The following cases of non-uniform heating were considered : AT = 3 O F ,  

A T  = 5 O F ,  and A T  = 8 OF. The parameters were chosen to simulate the experiments 
of Strazisar & Reshotko (1978). Comparison of these two non-uniform surface heating 
distributions will be made with the experiments of Strazisar & Reshotko and the 
stability theory of Nayfeh & El-Hady (1980). In the experiments, the wall temperature 
is held fixed at a reference location x, corresponding to a Reynolds number 
Real(x,) = 800 for the unheated case. In the numerical simulations, the temperature is 
held constant at this Reynolds number at the above prescribed heating level. The 
power law temperature distributions are shown in figure 10 for the case of AT = 8 O F  

at Re,, = 800. For p = - 0.5, the temperature difference is larger than for the uniform 
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FIGURE 14. Comparison of wall heat input and level of control achieved, F = 1 and Req = 800 based 
on the amplitude at (a) the inner maximum of the two-dimensional streamwise velocity, U,  and (b) 
the second inner maximum of the three-dimensional streamwise velocity, U,. 

heating case at all locations upstream of Resl = 800 (x, z 2.2), while the temperature 
difference is below the uniformly heated case for p = 1 .O. Downstream of Resl = 800, 
the temperature difference decreases below the uniformly heated level for p = -0.5, 
but increases for p = 1.0. For an increased temperature difference, the velocity profile 
iX/i3y is fuller, thus enhancing stability. Therefore, the non-uniform wall heating case 
of A ,  x;0.5 should provide a more stabilizing influence than A,  xko  and A,  xko upstream 
of Redl = 800, while A 0 x ~ O  is more stabilizing downstream of the reference location. 
This is an important point when comparing different non-parallel surface temperature 
distributions, and has been discussed by Asrar & Nayfeh (1985). 

For the non-uniform surface temperature distributions used in this work, the 
reference point is located towards the end of the computational domain. Therefore, it 
is expected that the exponent p = -0.5 is more stabilizing than p = 1.0 and p = 0. 

Results of non-uniform surface heating for the frequency F = 1 are shown in detail. 
At the beginning of the streamwise domain, the skin friction, shown in figure 11, is 
larger for p = -0.5 than for p = 1.0, while the opposite occurs further downstream. 
The larger skin friction means a fuller base flow velocity profile and thus enhanced 
stability. 
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FIGURE 15. Comparison of amplification rates from Navier-Stokes calculations with parallel linear 
stability theory and experiments for non-uniform wall heating at Re,l = 800, F = 1 for (a) A,x;'.' and 
(b) A , x ~ O .  0, Navier-Stokes (inner max u); 0, Navier-Stokes (maxv); A, parallel (inner max u) (El- 
Hady et al.): +, experiments (inner maxu) (Strazisar et al.). 

The downstream growth of the amplitudes, for the maximum of the U,, and U,  
velocities is shown in figures 12 and 13 for both p = -0.5 and p = 1.0. Here it is 
obvious that the stabilizing influence is more pronounced for p = -0.5 then for 

In order to compare accurately the efficiency of control using non-uniform 
temperature heating with that of uniform temperature heating, the actual heat input to 
the wall is compared in figure 14. The amplitude at the maximum of the U, velocity 
at Resl = 800 versus the heat input over the computational domain is shown for each 
heating case considered. Both the two- and three-dimensional modes are shown. The 
actual heat input required for the same reduction in amplitude is lower for p = -0.5 
than for p = 0 and p = 1 .O. This makes the temperature distribution A ,  x;'.' the most 
energy efficient one of the distributions considered when the reference location is near 
the end of the controlled flow field. The temperature distribution A , x k o  should be 
more efficient if the reference location is near the beginning of the control region. 

p = 1.0. 
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FIGURE 16. Comparison of amplification rates from Navier-Stokes calculations with parallel linear 
stability theory and experiments for non-uniform wall heating at ReJl = 800, F = 1.55 for (a) A,,x;'.~ 
and (b) A,  xk". See figure 15 for key. 

Comparison with theory and experiments for non-uniform surface heating is made 
for both F = 1 and F = 1.55. As before, only the linear two-dimensional amplification 
rates are compared since the experimental and theoretical work was for two- 
dimensional waves. Figures 15 and 16 show a comparison of the amplification rates at 
Re, = 800 for different levels of heating. In figures 15(a) and 16(a), the temperature 
dis&ibution applied at the wall is A , x ; ' . ~  and in figures 15(b) and 16(b) the 
temperature distribution is A,  xko .  The linear stability theory results of Nayfeh & El- 
Hady (1980) for a parallel, non-uniformly heated boundary layer are shown. (Again, 
the comparison with the non-parallel results is not made since the streamwise 
distortion of the eigenfunction was not taken into account in the stability analysis.) In 
addition, the amplification rates from the experimental work of Strazisar & Reshotko 
(1978) are compared where available. The experimental points are deduced from curves 
faired through the measurements near Res, = 800. 

As was the case for uniform heating, the agreement in the growth rates between 
parallel linear theory and the full simulations is better when based on the inner 
maximum of the U,, velocity than the maximum V, velocity. The discrete values of the 
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growth rates from the experiments are not available for all cases considered, but the 
trends showed good qualitative agreement with the numerical simulations. For F = 1 
andp = -0.5, both the direct simulations and the experiments showed a damping. For 
F = 1 and p = 1.0, the experimental points indicate a stabilized boundary layer, also 
in agreement with the Navier-Stokes calculations. 

For p = -0.5 and F = 1.55, the trend towards stabilization for higher levels of heat 
input is found in the experiments. However, for p = 1 .O, the experimental growth rate 
increases for A,  xko  = 3 O F  and then decreases for A,  xko = 5 OF. The growth rate for 
A o x k 0  = 8 O F  from the experimental work shows a damped value. The increase and 
decrease in growth rates was also seen in the experiments of Strazisar et al. (1977) for 
uniform heating at F = 1.55. This trend is again not seen in either the full Navier-Stokes 
simulations or the stability analysis. 

5.3. Passive control of secondary instability using uniform wall heating 
In addition to control of small-amplitude two- and three-dimensional disturbances, 
control of the early stages of the nonlinear three-dimensional secondary instability 
process was also investigated. For this, uniform heating was applied for both the 
fundamental ordered peak-valley and the subharmonic staggered breakdown 
processes. The parameters chosen for the simulation of secondary instability closely 
model the experiments of Klebanoff et al. (1962) for the fundamental breakdown and 
Kachanov & Levchenko (1984) for the subharmonic breakdown. However, boundary- 
layer control was not applied in these experimental investigations. Unfortunately, 
neither theoretical nor experimental investigations with control of the spatial secondary 
instability process are available. Therefore, the above experiments only provide a 
qualitative reference for comparison of the influence of passive heating on the 
secondary instability process. 

Values for several parameters were the same as for the simulations discussed 
previously, including T,, p,, Pr, Re, U,, and L. The remaining parameters differ for 
the two different secondary instability processes. First, the results for control of 
fundamental breakdown are discussed, followed by the results for control of the 
subharmonic breakdown process. 

5.3.1. Passive control of the fundamental breakdown process 
The parameters used in the investigation of control of the ordered peak-valley 

breakdown process were: eD = 0.588 (PZD = 5.88), 4D = 0.588 (P,D = 5.88), y = 24.3, 
K = 2, ev0 = 1.2 x and ev, = 2.4 x lo-*. The frequencies for both the two- and 
three-dimensional disturbance input are the same. These parameters are chosen to 
match as closely as possible the conditions of the experiments of Klebanoff et al. 
(1962). Approximately 60 grid points per disturbance wavelength are used and the 
streamwise domain contains about 15 disturbance wavelengths. The y-direction spans 
5.5 boundary-layer displacement thicknesses at the inflow boundary and approximately 
five boundary-layer displacement thicknesses at the outflow boundary. There are 100 
timesteps per disturbance period. The computation proceeds for eight disturbance 
periods. Numerical tests have shown that, in the region considered, two Fourier modes 
are sufficient to resolve the spanwise flow. 

For all control simulations of secondary instability, the disturbances are introduced 
through periodic blowing and suction by a narrow strip at the wall. The wall boundary 
conditions follow from (4.2) for the undisturbed flow: 

(5.2a) 
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FIGURE 17(a, b). For caption see facing page. 

and for the disturbed flow for k < 1 : 

where V,([,) is represented by a fifth-order polynomial. The strip is located one 
disturbance wavelength downstream of the left boundary (xSB = 60 and x S E  = 120) 
and its width is approximately one disturbance wavelength. The disturbance amplitudes 
cVv, are chosen so that the velocity perturbations create disturbance waves of the same 
amplitude as observed in the experiments. 

The wall has a uniform temperature distribution ( p  = 0) applied to it, as shown by 
(5.1a). The following two cases are considered for the control of the fundamental 
breakdown process using uniform wall heating ( p  = 0 in (5.1 a)): AT = 8 O F  and 
A T  = 15 O F .  These two cases are compared with results from an uncontrolled case. 

Contours of the streamwise and spanwise disturbance velocities at the spanwise peak 
locations are shown in figure 17 for both the uncontrolled case (figures 17a and 17c) 
and the controlled case with AT = 15 O F  (Figures 17b and 17d). Negative contour 
values are indicated by the dashed lines, while the positive contours are solid. For the 
uncontrolled flow, the growth in the streamwise x-direction is evident for both velocity 
components. In contrast, the uncontrolled case exhibits a strong reduction of 
disturbance levels when proceeding in the downstream direction. 
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FIGURE 17. Comparison of the disturbed flow for fundamental breakdown without control and with 
uniform wall heating at the spanwise peak plane. Contours of instantaneous velocity components in 
the (x,y)-plane are shown for the (a) streamwise velocity, u, z = 0 and AT = 0 O F ,  (b) streamwise 
velocity, u, z = 0 and AT = 15 O F ,  (c) spanwise velocity, w, z = :A, and A T  = 0 O F ,  and (d )  spanwise 
velocity, w ,  z = +Az and AT = 15 O F .  Contour increments are 0.0023 for the streamwise velocity and 
0.0004 for the spanwise velocity. 

To examine the influence of uniform heating on the fundamental breakdown process 
in more detail, amplitude distributions with respect to y are shown in figure 18. The 
comparison is made for x = 10.65. The amplitude distributions are shown for both the 
fundamental frequency E; = 0.588 and for the first harmonic 4 = 24 for both the two- 
and three-dimensional wave components. The reduction in amplitude is clearly evident 
for both the fundamental and higher harmonic. The U, velocity component with 
fundamental frequency E; shows similar trends as observed in the linear control results. 
The shape of the amplitude profiles are not strongly affected. As seen from the results 
for the case A T  = 15 OF, increased heating appears not to have as strong an effect as 
might be expected for this high temperature when compared with the AT = 8 O F  case. 
This is probably due to the fact that the viscosity does not vary as strongly with 
temperature at the higher temperature levels. For the first harmonic 4 of the U,, 
velocity shown in figure 18 (b), the amplitude level shows an even stronger reduction. 
In addition, the amplitude profiles show a certain change in shape and a third 
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FIGURE 18. Influence of uniform wall heating on the amplitude distribution at x = 10.65 and z = 0 
(spanwise peak plane) for fundamental breakdown on the (a) two-dimensional streamwise velocity, 
U,,, F, = 0.588, (b) two-dimensional streamwise velocity, U,, 4, ( c )  three-dimensional streamwise 
velocity, U,, F,,  ( d )  three-dimensional streamwise velocity, U,, F,,  and (e) three-dimensional 
streamwise velocity, U,, mean component. -, AT = 0 O F ;  . . ., 8 O F ;  ---, 15 O F .  

maximum appears for the lower amplitudes. Figure 18 (c)  shows the effect of uniform 
heating on the U, velocity (three-dimensional component) for the fundamental 
frequency 4. Here the influence of uniform heating is more significant. The amplitudes 
are more strongly reduced than for the two-dimensional component. The amplitude 
profiles for the first harmonic of the U, velocity are shown in figure 18(d) and the 
reduction in amplitude is again evident. The location of the main peak is also shifted 
closer to the wall when heating is applied. Finally, figure 18(e) shows the three- 
dimensional mean component. This is the time invariant, three-dimensional component 
which is periodic in the spanwise direction. This component represents a stationary 
modulation of the base flow and was first observed in the experiments of Klebanoff 
et al. (1962). This stationary component is present for all flow variables and represents 
a longitudinal vortex system. This three-dimensional mean component creates the 
peak-valley structure. This component is on the same order of magnitude as the three- 
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dimensional component with the fundamental frequency for the uncontrolled case. It 
is obvious from figure 18(e) that the time invariant component is not significantly 
reduced with heating applied when compared with the reduction in amplitudes of the 
fundamental and first harmonic; in particular additional heating from 8" to 15" has 
only an insignificant effect. 

To further explore the behaviour of the spanwise periodic mean flow component, the 
U, mean component is plotted versus the streamwise x-direction in figure 19(a). The 
amplitudes are for the maximum of the U, mean velocity. For the uncontrolled flow, 
this mean component develops rapidly downstream and shows a significant increase in 
growth rate towards the end of the x-domain under consideration. However, for the 
heated boundary layer, this mean component begins to decrease near the end of the 
domain of interest. Thus heating is also reducing the strength of the longitudinal vortex 
system. For the fundamental frequency, figures 19(b) and 19(c) show the streamwise 
amplitude growth for the U,, and U, velocities, respectively. The two-dimensional 
amplitude shows a growth downstream for the uncontrolled case, but is clearly damped 
with heating applied. The three-dimensional amplitude without passive control applied 
shows a reduction in growth downstream and then a very sharp increase in the growth 
rate as secondary instability strongly sets in. A solution of the Orr-Sommerfeld 
equation for three-dimensional disturbances shows that a linear-amplitude wave 
should decay over the Reynolds number region considered here. The strong three- 
dimensional growth rate at the end of the domain is therefore probably due to 
nonlinear effects. With heating applied, the three-dimensional amplitude levels and 
growth rates are reduced. Although the three-dimensional growth rates are positive 
towards the end of the solution domain, they are much smaller than without control 
applied. 

5.3.2. Passive control of the subharmonic breakdown process 
Passive control of the subharmonic breakdown process is now discussed and 

comparison is made with control of the fundamental breakdown process. The 
parameters used in the numerical simulations are as follows: & = 1.24 v,, = 12.4), 
&D = 0.62 v,, = 5.2), y = 32.47, K =  2, ev0 = 1.45 x lop3, and eVl = 6.00 x lop6. The 
parameters are chosen to simulate as closely as possible the laboratory experiments of 
Kachanov & Levchenko (1984). The two-dimensional fundamental frequency is twice 
the three-dimensional fundamental frequency. There are approximately 30 points per 
two-dimensional streamwise wavelength and 60 grid points per three-dimensional 
streamwise disturbance wavelength. The streamwise domain contains approximately 
30 two-dimensional disturbance wavelengths and 15 three-dimensional disturbance 
wavelengths. The normal direction spans ten boundary-layer displacement thicknesses 
at the inflow boundary and approximately 4.5 boundary-layer displacement thicknesses 
at the outflow boundary. The time discretization is chosen so that there are 60 
timesteps per two-dimensional disturbance period and thus 120 timesteps per three- 
dimensional disturbance period. Five disturbance periods of the subharmonic wave 
component (until L = 600) are computed. As for the fundamental breakdown case, 
tests have shown that the parameter K = 2 is sufficient to resolve the spanwise flow in 
the computational region considered. 

As in the previous section, the disturbances are introduced through a suction and 
blowing strip at the wall. The same wall boundary conditions are used to create the 
disturbance waves as for fundamental breakdown and are given by (5.2). The suction 
and blowing strip is located between xSB, = 50 and xSEl = I10 and its width is about 
one (three-dimensional) wavelength. The disturbance amplitudes ev, and evl are chosen 



Passive control of boundary-layer transition 

5 
x 10-3 

4 -  

3 -  

u,, (FJ 

2 -  

1 -  

01 

247 

(4 

8 9 10 11 

I 

FIGURE 19. Influence of uniform wall heating on the amplitude growth for fundamental breakdown 
based on the amplitude at (a) the maximum of the three-dimensional streamwise velocity, U,, mean 
component, (b) the maximum of the two-dimensional streamwise velocity, U,, F,, and (c)  the 
maximum of the three-dimensional streamwise velocity, U,, 4. (i) AT = 0 O F ;  (ii) AT = 8 O F ;  
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to match the velocity perturbations observed in the experiments. For the control of 
subharmonic breakdown, the following two cases are considered: AT = 8 O F  and 
A T =  15 O F .  

The disturbed flow in the (x, y)-plane at a peak position in the spanwise direction is 
shown at timestep L = 600 in figure 20. Contours are shown for the streamwise and 
spanwise velocities. Comparison is shown between the uncontrolled flow field 
A T  = 0 O F  and the uniformly heated flow AT = 15 O F .  Comparing the results for the 
controlled and the uncontrolled cases, it is obvious that there is a significant reduction 
of amplitude in the downstream direction for the heated flow. In fact, the three- 
dimensional components are even more reduced than the two-dimensional com- 
ponents. The stationary modulation of the base flow that was present in the 
fundamental breakdown simulation is not present here. This is consistent with the fact 
that the subharmonic breakdown does not exhibit a longitudinal vortex system. 

The influence of uniform heating on the amplitude profiles for the subharmonic 
breakdown process is shown in figure 21. Comparison is made at x = 3.0. The 
amplitude profiles for the fundamental frequency and the first harmonic are shown for 
both the two- and three-dimensional wave components. The U, velocity with 
fundamental frequency 4 = & = 1.24 is shown in figure 21 (a)  and shows similar 
trends as seen in the control of fundamental breakdown. However, heating reduces the 
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FIGURE 20. Comparison of the disturbed flow for subharmonic breakdown without control and with 
uniform wall heating at the spanwise peak plane. Contours of instantaneous velocity components in 
the (x,y)-plane are shown for the (a) streamwise velocity, u, z = 0 and AT= 0 O F ,  (b) streamwise 
velocity, u, z = 0 and AT = 15 O F ,  (c) spanwise velocity, w ,  z = in, and AT = 0 O F ,  and (d) spanwise 
velocity, w, z = +A, and AT = 15 O F .  Contour increments are 0.002 for the streamwise velocity and 
0.000014 for the spanwise velocity. 

amplitude levels by a slightly higher level. The subharmonic breakdown is at a different 
frequency and in a different Reynolds number range than the fundamental breakdown 
simulations so the stability characteristics of the flow are different. The first harmonic 
F, = 2 4  of the U, velocity is shown in figure 21 (b). As for the fundamental breakdown 
cases, the amplitude level of the first harmonic shows an even stronger reduction than 
the fundamental frequency. The change in shape with heating can again be observed. 
The influence of uniform heating on the U, velocity profile for the three-dimensional 
fundamental frequency F4 = & = +4 is shown in figure 21 (c). As seen in the control 
of fundamental breakdown, the three-dimensional amplitudes are reduced by a 
considerably larger percentage than the two-dimensional components. A shift of the 
maximum towards the wall and the appearance of a second maximum can be observed. 
Finally, the first harmonic of the U, velocity is shown in figure 21 (d) for the frequency 
4 = 3& =$4. As can be seen, the first harmonic of the three-dimensional U, 
velocity is almost completely damped out for the higher heating level. 
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FIGURE 21 (a, b). For caption see facing page. 

The downstream amplitude growth for the subharmonic breakdown case is shown 
in figure 22 for the maximum of both the U,, and U, velocity components for the two- 
dimensional fundamental frequency & and the three-dimensional subharmonic 
frequency F .  The two-dimensional growth is again similar to that observed in the 
fundamental breakdown simulations. With uniform heating applied, the disturbances 
are damped downstream. The behaviour of the three-dimensional disturbance growth 
is also similar to the fundamental breakdown process. Without control applied, the 
amplitudes decay slightly and then a strong increase in growth rate appears. As for the 
fundamental breakdown case, linear stability theory results have shown that small- 
amplitude three-dimensional disturbances are stable for the Reynolds number range 
considered here. Therefore, the increased three-dimensional growth is attributed to the 
secondary instability mechanism. With heating employed, the three-dimensional 
amplitude levels and growth rates are significantly reduced. The fact that passive 
control of subharmonic breakdown appears slightly more effective when compared 
with fundamental breakdown is most probably due to the lower amplitude levels 
required in the early stages of subharmonic breakdown, as compared to fundamental 
breakdown. 
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FIGURE 21. Influence of uniform wall heating on the amplitude distribution at x = 3.0 and z = 0 
(spanwise peak plane) for subharmonic breakdown on the (a) two-dimensional streamwise velocity, 
U,,, F, = 1.24, (b) two-dimensional streamwise velocity, U,,, F,, (c)  three-dimensional streamwise 
velocity, U,, F+, and ( d )  three-dimensional streamwise velocity, U,, F;. See figure 18 for key. 

6. Conclusions 
A numerical method has been developed for studying passive control of the 

transition phenomena in a flat plate boundary layer using wall heating. Control of 
small-amplitude two- and three-dimensional oblique waves was investigated with 
uniform heating applied. It was shown that the amplitude levels and growth rates can 
be significantly reduced. Non-uniform surface heating has been shown to be an even 
more efficient means of controlling linear amplitude disturbance waves, requiring less 
total heat input than for uniform heating. 

Comparison of the small-amplitude control investigations was made with parallel 
linear theory, non-parallel theory, and experiments. The agreement with the linear 
theory of Lowell (1 974), El-Hady & Nayfeh (1979) and Nayfeh & El-Hady (1980) was 
generally quite good. The results of the direct simulations were in better agreement 
with the non-parallel theory of El-Hady & Nayfeh at the lower disturbance frequencies. 
Agreement with the experiments of Strazisar et al. (1977) and Strazisar & Reshotko 
(1978) was qualitatively good at a moderate frequency. However, the experimental 
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FIGURE 22. Influence of uniform wall heating on the amplitude growth for subharmonic breakdown 
for (a) the maximum of the two-dimensional streamwise velocity, U,, F,,  and (b) the maximum of the 
three-dimensional streamwise velocity, U,, F;. See figure 18 for key. 

trends at a higher frequency and larger heating levels, which showed a crossing of the 
neutral curves, were not predicted by the numerical simulations. However, neither the 
parallel linear theory nor the non-parallel theory predicted these experimental trends 
at the higher frequencies. 

Control of the secondary instability process was also investigated. Uniform heating 
for both the fundamental and subharmonic breakdown processes resulted in reductions 
in the amplitude levels and growth rates for both the two- and three-dimensional 
components. The level of control achieved was similar for both breakdown processes 
with control of the subharmonic breakdown process slightly more effective, which is 
attributed in part to the lower two-dimensional amplitude levels present for 
subharmonic breakdown. The high three-dimensional growth rates that are charac- 
teristic of the secondary instability process were significantly reduced compared to the 
uncontrolled state. 
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